metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C42.6F5, Dic5.10M4(2), (C4×D5)⋊7C8, C20.22(C2×C8), (C4×C20).18C4, C4.17(D5⋊C8), D10.13(C2×C8), C10.2(C22×C8), D10⋊C8.6C2, Dic5.14(C2×C8), (C4×Dic5).25C4, (D5×C42).30C2, C10.3(C2×M4(2)), Dic5⋊C8⋊14C2, C5⋊1(C42.12C4), C2.3(D5⋊M4(2)), C10.1(C42⋊C2), Dic5.23(C4○D4), C22.27(C22×F5), (C2×Dic5).314C23, (C4×Dic5).354C22, C2.1(D10.C23), (C4×C5⋊C8)⋊8C2, C2.4(C2×D5⋊C8), (C2×C4×D5).27C4, (C2×C4).96(C2×F5), (C2×C5⋊C8).16C22, (C2×C20).167(C2×C4), (C2×C4×D5).356C22, (C2×C10).16(C22×C4), (C2×Dic5).164(C2×C4), (C22×D5).116(C2×C4), SmallGroup(320,1016)
Series: Derived ►Chief ►Lower central ►Upper central
| C1 — C5 — C10 — Dic5 — C2×Dic5 — C2×C5⋊C8 — C4×C5⋊C8 — C42.6F5 |
Subgroups: 378 in 118 conjugacy classes, 56 normal (30 characteristic)
C1, C2 [×3], C2 [×2], C4 [×2], C4 [×8], C22, C22 [×4], C5, C8 [×4], C2×C4 [×3], C2×C4 [×11], C23, D5 [×2], C10 [×3], C42, C42 [×3], C2×C8 [×4], C22×C4 [×3], Dic5 [×6], C20 [×2], C20 [×2], D10 [×2], D10 [×2], C2×C10, C4×C8 [×2], C22⋊C8 [×2], C4⋊C8 [×2], C2×C42, C5⋊C8 [×4], C4×D5 [×4], C4×D5 [×4], C2×Dic5 [×3], C2×C20 [×3], C22×D5, C42.12C4, C4×Dic5 [×3], C4×C20, C2×C5⋊C8 [×4], C2×C4×D5 [×3], C4×C5⋊C8 [×2], D10⋊C8 [×2], Dic5⋊C8 [×2], D5×C42, C42.6F5
Quotients:
C1, C2 [×7], C4 [×4], C22 [×7], C8 [×4], C2×C4 [×6], C23, C2×C8 [×6], M4(2) [×2], C22×C4, C4○D4 [×2], F5, C42⋊C2, C22×C8, C2×M4(2), C2×F5 [×3], C42.12C4, D5⋊C8 [×2], C22×F5, C2×D5⋊C8, D5⋊M4(2), D10.C23, C42.6F5
Generators and relations
G = < a,b,c,d | a4=b4=c5=1, d4=b2, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=a2b, dcd-1=c3 >
(1 83 57 71)(2 84 58 72)(3 85 59 65)(4 86 60 66)(5 87 61 67)(6 88 62 68)(7 81 63 69)(8 82 64 70)(9 89 24 130)(10 90 17 131)(11 91 18 132)(12 92 19 133)(13 93 20 134)(14 94 21 135)(15 95 22 136)(16 96 23 129)(25 79 125 151)(26 80 126 152)(27 73 127 145)(28 74 128 146)(29 75 121 147)(30 76 122 148)(31 77 123 149)(32 78 124 150)(33 43 104 143)(34 44 97 144)(35 45 98 137)(36 46 99 138)(37 47 100 139)(38 48 101 140)(39 41 102 141)(40 42 103 142)(49 114 106 160)(50 115 107 153)(51 116 108 154)(52 117 109 155)(53 118 110 156)(54 119 111 157)(55 120 112 158)(56 113 105 159)
(1 7 5 3)(2 64 6 60)(4 58 8 62)(9 37 13 33)(10 101 14 97)(11 39 15 35)(12 103 16 99)(17 38 21 34)(18 102 22 98)(19 40 23 36)(20 104 24 100)(25 107 29 111)(26 51 30 55)(27 109 31 105)(28 53 32 49)(41 95 45 91)(42 129 46 133)(43 89 47 93)(44 131 48 135)(50 121 54 125)(52 123 56 127)(57 63 61 59)(65 71 69 67)(66 84 70 88)(68 86 72 82)(73 155 77 159)(74 118 78 114)(75 157 79 153)(76 120 80 116)(81 87 85 83)(90 140 94 144)(92 142 96 138)(106 128 110 124)(108 122 112 126)(113 145 117 149)(115 147 119 151)(130 139 134 143)(132 141 136 137)(146 156 150 160)(148 158 152 154)
(1 147 132 143 113)(2 144 148 114 133)(3 115 137 134 149)(4 135 116 150 138)(5 151 136 139 117)(6 140 152 118 129)(7 119 141 130 145)(8 131 120 146 142)(9 27 81 111 39)(10 112 28 40 82)(11 33 105 83 29)(12 84 34 30 106)(13 31 85 107 35)(14 108 32 36 86)(15 37 109 87 25)(16 88 38 26 110)(17 55 128 103 70)(18 104 56 71 121)(19 72 97 122 49)(20 123 65 50 98)(21 51 124 99 66)(22 100 52 67 125)(23 68 101 126 53)(24 127 69 54 102)(41 89 73 63 157)(42 64 90 158 74)(43 159 57 75 91)(44 76 160 92 58)(45 93 77 59 153)(46 60 94 154 78)(47 155 61 79 95)(48 80 156 96 62)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)
G:=sub<Sym(160)| (1,83,57,71)(2,84,58,72)(3,85,59,65)(4,86,60,66)(5,87,61,67)(6,88,62,68)(7,81,63,69)(8,82,64,70)(9,89,24,130)(10,90,17,131)(11,91,18,132)(12,92,19,133)(13,93,20,134)(14,94,21,135)(15,95,22,136)(16,96,23,129)(25,79,125,151)(26,80,126,152)(27,73,127,145)(28,74,128,146)(29,75,121,147)(30,76,122,148)(31,77,123,149)(32,78,124,150)(33,43,104,143)(34,44,97,144)(35,45,98,137)(36,46,99,138)(37,47,100,139)(38,48,101,140)(39,41,102,141)(40,42,103,142)(49,114,106,160)(50,115,107,153)(51,116,108,154)(52,117,109,155)(53,118,110,156)(54,119,111,157)(55,120,112,158)(56,113,105,159), (1,7,5,3)(2,64,6,60)(4,58,8,62)(9,37,13,33)(10,101,14,97)(11,39,15,35)(12,103,16,99)(17,38,21,34)(18,102,22,98)(19,40,23,36)(20,104,24,100)(25,107,29,111)(26,51,30,55)(27,109,31,105)(28,53,32,49)(41,95,45,91)(42,129,46,133)(43,89,47,93)(44,131,48,135)(50,121,54,125)(52,123,56,127)(57,63,61,59)(65,71,69,67)(66,84,70,88)(68,86,72,82)(73,155,77,159)(74,118,78,114)(75,157,79,153)(76,120,80,116)(81,87,85,83)(90,140,94,144)(92,142,96,138)(106,128,110,124)(108,122,112,126)(113,145,117,149)(115,147,119,151)(130,139,134,143)(132,141,136,137)(146,156,150,160)(148,158,152,154), (1,147,132,143,113)(2,144,148,114,133)(3,115,137,134,149)(4,135,116,150,138)(5,151,136,139,117)(6,140,152,118,129)(7,119,141,130,145)(8,131,120,146,142)(9,27,81,111,39)(10,112,28,40,82)(11,33,105,83,29)(12,84,34,30,106)(13,31,85,107,35)(14,108,32,36,86)(15,37,109,87,25)(16,88,38,26,110)(17,55,128,103,70)(18,104,56,71,121)(19,72,97,122,49)(20,123,65,50,98)(21,51,124,99,66)(22,100,52,67,125)(23,68,101,126,53)(24,127,69,54,102)(41,89,73,63,157)(42,64,90,158,74)(43,159,57,75,91)(44,76,160,92,58)(45,93,77,59,153)(46,60,94,154,78)(47,155,61,79,95)(48,80,156,96,62), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)>;
G:=Group( (1,83,57,71)(2,84,58,72)(3,85,59,65)(4,86,60,66)(5,87,61,67)(6,88,62,68)(7,81,63,69)(8,82,64,70)(9,89,24,130)(10,90,17,131)(11,91,18,132)(12,92,19,133)(13,93,20,134)(14,94,21,135)(15,95,22,136)(16,96,23,129)(25,79,125,151)(26,80,126,152)(27,73,127,145)(28,74,128,146)(29,75,121,147)(30,76,122,148)(31,77,123,149)(32,78,124,150)(33,43,104,143)(34,44,97,144)(35,45,98,137)(36,46,99,138)(37,47,100,139)(38,48,101,140)(39,41,102,141)(40,42,103,142)(49,114,106,160)(50,115,107,153)(51,116,108,154)(52,117,109,155)(53,118,110,156)(54,119,111,157)(55,120,112,158)(56,113,105,159), (1,7,5,3)(2,64,6,60)(4,58,8,62)(9,37,13,33)(10,101,14,97)(11,39,15,35)(12,103,16,99)(17,38,21,34)(18,102,22,98)(19,40,23,36)(20,104,24,100)(25,107,29,111)(26,51,30,55)(27,109,31,105)(28,53,32,49)(41,95,45,91)(42,129,46,133)(43,89,47,93)(44,131,48,135)(50,121,54,125)(52,123,56,127)(57,63,61,59)(65,71,69,67)(66,84,70,88)(68,86,72,82)(73,155,77,159)(74,118,78,114)(75,157,79,153)(76,120,80,116)(81,87,85,83)(90,140,94,144)(92,142,96,138)(106,128,110,124)(108,122,112,126)(113,145,117,149)(115,147,119,151)(130,139,134,143)(132,141,136,137)(146,156,150,160)(148,158,152,154), (1,147,132,143,113)(2,144,148,114,133)(3,115,137,134,149)(4,135,116,150,138)(5,151,136,139,117)(6,140,152,118,129)(7,119,141,130,145)(8,131,120,146,142)(9,27,81,111,39)(10,112,28,40,82)(11,33,105,83,29)(12,84,34,30,106)(13,31,85,107,35)(14,108,32,36,86)(15,37,109,87,25)(16,88,38,26,110)(17,55,128,103,70)(18,104,56,71,121)(19,72,97,122,49)(20,123,65,50,98)(21,51,124,99,66)(22,100,52,67,125)(23,68,101,126,53)(24,127,69,54,102)(41,89,73,63,157)(42,64,90,158,74)(43,159,57,75,91)(44,76,160,92,58)(45,93,77,59,153)(46,60,94,154,78)(47,155,61,79,95)(48,80,156,96,62), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160) );
G=PermutationGroup([(1,83,57,71),(2,84,58,72),(3,85,59,65),(4,86,60,66),(5,87,61,67),(6,88,62,68),(7,81,63,69),(8,82,64,70),(9,89,24,130),(10,90,17,131),(11,91,18,132),(12,92,19,133),(13,93,20,134),(14,94,21,135),(15,95,22,136),(16,96,23,129),(25,79,125,151),(26,80,126,152),(27,73,127,145),(28,74,128,146),(29,75,121,147),(30,76,122,148),(31,77,123,149),(32,78,124,150),(33,43,104,143),(34,44,97,144),(35,45,98,137),(36,46,99,138),(37,47,100,139),(38,48,101,140),(39,41,102,141),(40,42,103,142),(49,114,106,160),(50,115,107,153),(51,116,108,154),(52,117,109,155),(53,118,110,156),(54,119,111,157),(55,120,112,158),(56,113,105,159)], [(1,7,5,3),(2,64,6,60),(4,58,8,62),(9,37,13,33),(10,101,14,97),(11,39,15,35),(12,103,16,99),(17,38,21,34),(18,102,22,98),(19,40,23,36),(20,104,24,100),(25,107,29,111),(26,51,30,55),(27,109,31,105),(28,53,32,49),(41,95,45,91),(42,129,46,133),(43,89,47,93),(44,131,48,135),(50,121,54,125),(52,123,56,127),(57,63,61,59),(65,71,69,67),(66,84,70,88),(68,86,72,82),(73,155,77,159),(74,118,78,114),(75,157,79,153),(76,120,80,116),(81,87,85,83),(90,140,94,144),(92,142,96,138),(106,128,110,124),(108,122,112,126),(113,145,117,149),(115,147,119,151),(130,139,134,143),(132,141,136,137),(146,156,150,160),(148,158,152,154)], [(1,147,132,143,113),(2,144,148,114,133),(3,115,137,134,149),(4,135,116,150,138),(5,151,136,139,117),(6,140,152,118,129),(7,119,141,130,145),(8,131,120,146,142),(9,27,81,111,39),(10,112,28,40,82),(11,33,105,83,29),(12,84,34,30,106),(13,31,85,107,35),(14,108,32,36,86),(15,37,109,87,25),(16,88,38,26,110),(17,55,128,103,70),(18,104,56,71,121),(19,72,97,122,49),(20,123,65,50,98),(21,51,124,99,66),(22,100,52,67,125),(23,68,101,126,53),(24,127,69,54,102),(41,89,73,63,157),(42,64,90,158,74),(43,159,57,75,91),(44,76,160,92,58),(45,93,77,59,153),(46,60,94,154,78),(47,155,61,79,95),(48,80,156,96,62)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)])
Matrix representation ►G ⊆ GL6(𝔽41)
| 9 | 0 | 0 | 0 | 0 | 0 |
| 0 | 9 | 0 | 0 | 0 | 0 |
| 0 | 0 | 32 | 0 | 0 | 0 |
| 0 | 0 | 0 | 32 | 0 | 0 |
| 0 | 0 | 0 | 0 | 32 | 0 |
| 0 | 0 | 0 | 0 | 0 | 32 |
| 32 | 0 | 0 | 0 | 0 | 0 |
| 0 | 9 | 0 | 0 | 0 | 0 |
| 0 | 0 | 22 | 38 | 0 | 3 |
| 0 | 0 | 0 | 19 | 38 | 3 |
| 0 | 0 | 3 | 38 | 19 | 0 |
| 0 | 0 | 3 | 0 | 38 | 22 |
| 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 40 |
| 0 | 0 | 1 | 0 | 0 | 40 |
| 0 | 0 | 0 | 1 | 0 | 40 |
| 0 | 0 | 0 | 0 | 1 | 40 |
| 0 | 1 | 0 | 0 | 0 | 0 |
| 9 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 4 | 4 | 24 | 26 |
| 0 | 0 | 28 | 30 | 7 | 30 |
| 0 | 0 | 11 | 34 | 11 | 13 |
| 0 | 0 | 15 | 17 | 37 | 37 |
G:=sub<GL(6,GF(41))| [9,0,0,0,0,0,0,9,0,0,0,0,0,0,32,0,0,0,0,0,0,32,0,0,0,0,0,0,32,0,0,0,0,0,0,32],[32,0,0,0,0,0,0,9,0,0,0,0,0,0,22,0,3,3,0,0,38,19,38,0,0,0,0,38,19,38,0,0,3,3,0,22],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,40,40,40,40],[0,9,0,0,0,0,1,0,0,0,0,0,0,0,4,28,11,15,0,0,4,30,34,17,0,0,24,7,11,37,0,0,26,30,13,37] >;
56 conjugacy classes
| class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | ··· | 4P | 4Q | 4R | 5 | 8A | ··· | 8P | 10A | 10B | 10C | 20A | ··· | 20L |
| order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 5 | 8 | ··· | 8 | 10 | 10 | 10 | 20 | ··· | 20 |
| size | 1 | 1 | 1 | 1 | 10 | 10 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 5 | ··· | 5 | 10 | 10 | 4 | 10 | ··· | 10 | 4 | 4 | 4 | 4 | ··· | 4 |
56 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 4 |
| type | + | + | + | + | + | + | + | |||||||||
| image | C1 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | C8 | M4(2) | C4○D4 | F5 | C2×F5 | D5⋊C8 | D5⋊M4(2) | D10.C23 |
| kernel | C42.6F5 | C4×C5⋊C8 | D10⋊C8 | Dic5⋊C8 | D5×C42 | C4×Dic5 | C4×C20 | C2×C4×D5 | C4×D5 | Dic5 | Dic5 | C42 | C2×C4 | C4 | C2 | C2 |
| # reps | 1 | 2 | 2 | 2 | 1 | 2 | 2 | 4 | 16 | 4 | 4 | 1 | 3 | 4 | 4 | 4 |
In GAP, Magma, Sage, TeX
C_4^2._6F_5
% in TeX
G:=Group("C4^2.6F5"); // GroupNames label
G:=SmallGroup(320,1016);
// by ID
G=gap.SmallGroup(320,1016);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,120,422,184,136,6278,1595]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^5=1,d^4=b^2,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=a^2*b,d*c*d^-1=c^3>;
// generators/relations